A Sample Handling, Encapsulation, and Containerization Subsystem Concept for Mars Sample Caching Missions ## 7th International Planetary Probe Workshop Barcelona, Spain Paulo Younse, Curtis Collins, Paul Backes Jet Propulsion Laboratory California Institute of Technology 17 June 2010 The subject matter in this paper is pre-decisional, and for discussion purposes only. - Sample Caching for Mars Sample Return - Integrated Mars Sample Acquisition & Handling (IMSAH) - Previous Mars Caching Concepts - Sample Handling, Encapsulation & Containerization System (SHEC) - SHEC Animation - SHEC Prototype - Conclusion 17/6/2010 ## Sample Caching for Mars Sample Return Integrated Mars Sample Acquisition & Handling (IMSAH) #### Why Mars? - "Mars has crustal and atmospheric characteristics that make it a priority exploration target for understanding the origins of life" - "Essential energy, water, and nutrient requirements to support and sustain life are currently present and the Martian geologic record offers tantalizing clue of many ancient habitable environments" - "If life emerged and evolved on early Mars then it is possible, and indeed likely, that physical or chemical biosignatures are preserved in the exposed rock record" #### Focus of Missions: - Follow the Water (ODY, MER, MEX, MRO, PHX) - Habitable Environments (MSL, MAVEN, TGM, EXM) - Seek Signs of Life (MAX-C, MSR) #### Motivation for Mars Samples: - "Significantly increase our understanding of atmospheric, biologic, and geologic processes occurring there, as well as permit evaluation of the hazards to humans on the surface" - Scientific analysis could be done without the limited instrument payload and operational resources of the rover or lander - Samples could be distributed amongst international laboratories and the science community - Samples could be preserved for analysis with future instruments Ref: Mars Astrobiology Explorer-Cacher (MAX-C): A Potential Rover Mission for 2018, Final Report of the Mars Mid-Range Rover Science Analysis Group, 2009. MEPAG Next Decade Science Analysis Group, "Science Priorities for Mars Sample Return," *Astrobiology*, Vol. 8, No. 3, 2008. Ref: Kazz, G., NASA Mars Program, Future Mars Mission Plans/Scenarios, 2009. ## Mars Astrobiology Explorer-Cacher (MAX-C) Integrated Mars Sample Acquisition & Handling (IMSAH) #### Proposed Mars Astrobiology Explorer-Cacher (MAX-C): - Mid-size rover expected around 300 kg - Proposed for 2018 launch window alongside ESA's ExoMars rover using MSL-like EDL - Instruments for remote and contact science, as well as coring rocks - Baseline a sample caching subsystem for encapsulating rock cores for potential future return Ref: Salvo, C. and Elfving, A., "Proposed Mars Astrobiology Explorer – Cacher (MAX-C) & ExoMars 2018 (MXM-2018) Mission Formulation Status, Jet Propulsion Laboratory, California Institute of Technology, Presented at the 22nd MEPAG Meeting, Monroivia, CA, Mar. 17-18, 2010. - Integrated Mars Sample Acquisition & Handling (IMSAH) Task at JPL - 3-year Jet Propulsion Laboratory RT&D task initiated in FY '09 - Objective: Develop and validate to TRL 4 an integrated core and soil sample acquisition and caching system suitable for use on a 300kg MER-class Mars rover - Target Mission: 2018 MAX-C - Schedule: - FY '09: Trade space and concept development - FY '10: TRL 4 hardware development - FY '11: TRL 4 integrated validation on a rover ## **Previous Mars Caching Concepts** #### Integrated Mars Sample Acquisition & Handling (IMSAH) ## **ATHENA Rover Caching Concept (1999)** - Proposed for MSR 03/05 - Rotary drag mini-corer capable of taking 50-60 cores of 8 mm wide by 25 mm in length - Limited ability to compensate for rover slip - Raw core ejection risk with broken cores - Requires dropping off samples into OSC - Not flown; rover evolved into MER #### **Mars Science Laboratory Caching Concept (2008)** - Single cache container capable of accepting 5-10 rock samples 0.5-1.5 cm across - Open to Mars environment - Grasping feature for a manipulator on a future fetch rover to remove it from MSL - Tabs holding container to the cradle bend away when the container is pulled out - Not included in final configuration due to rover design issues and debated science value ## JPL IMSAH Caching Concept Integrated Mars Sample Acquisition & Handling (IMSAH) ### Caching Subsystem: - Sample Encapsulation: Sample acquisition directly into the sample tube in the bit - Sample Transfer: Bit changeout for transferring sample to caching subsystem (sample in tube in bit) - Functions: Sample tube transfer in/out of bit, bit changeout, tube sealing, tube storage in canister #### **Tool Deployment Device:** - Design: 5 DOF arm - Functions: Tool deployment, alignment and linear feed; canister placement on the ground ## Sample Acquisition Tool: - Technique: Rotary percussion - Functions: Coring, breakoff, retention, bit changeout, linear spring for preload and vibration isolation 17/6/2010 ## Caching Subsystem – ## Sample Handling, Encapsulation and Containerization Concept ## **SHEC Handling Arm Stations** ## **SHEC Animation** Video Link Quicktime Video PGB, 14 ## Bringing the Samples Back to Earth Credit: NASA JPL/Caltech ## SHEC – Alternate Layouts | Configuration | Layout | Number of Bits | Number of
Tubes | Comments | |---|--------|----------------|---|--| | Full Version | | 6 | 31 sample tubes
31 plugs
24 spare tubes
17 spare plugs | Large sample
storage, large
bit storage,
most room for
drill interface | | Reduced Bit
Carousel | | 4 | 31 sample tubes
31 plugs
24 spare tubes
17 spare plugs | Large sample storage | | Reduced Bit
and Canister
Carousel | | 4 | 19 sample tubes
19 plugs
2 spare tubes
2 spare plugs | Smallest footprint | | Single-
Combined
Carousel | | 4 | 19 sample tubes
19 plugs
11 spare tubes
11 spare plugs | Requires 1
less actuator,
least room for
drill interface | ## SHEC – Multiple Canisters | Configuration | Layout | Number of Tubes | |-----------------|--------|---| | Single Canister | | 19 sample tubes
19 plugs
2 spare tubes
2 spare plugs | | Dual Canister | | 38 sample tubes
38 plugs
4 spare tubes
4 spare plugs | | Triple Canister | | 57 sample tubes
57 plugs
6 spare tubes
6 spare plugs | Angled bit carousel could allow variation in orientation of coring tool docking for bit changeout ## SHEC Proof-of-Concept Prototype (2009) ## SHEC TRL 4 Prototype in Development (2010) ### Conclusions - A Sample Handling, Encapsulation, and Containerisation (SHEC) subsystem capable of sample caching functions for proposed future Mars sample caching missions such as MAX-C is being developed through the IMSAH task at the Jet Propulsion Laboratory. - SHEC System Benefits: - Utilizes bit change-out to insert/remove sample tubes into bits - Collects samples directly into tube - Reduces contamination risks - Increases robustness to broken cores - Enables storage of tubes in a close-packed canister compatible with current Mars Sample Return architectures - Could lead to a simplified/lighter drill without the need for a push rod - Flexibility in the design: - Expansion for samples tubes and bits - Additional sample canisters - Angle bit carousel - Proof-of-concept prototype built and tested - TRL 4 level design currently in development ## Backup Slides 17/6/2010 ## **Caching System Option Space** #### Integrated Mars Sample Acquisition & Handling (IMSAH) PGB, 23 | | Robustness
Broken Co | | Close Packin | g | Sample
Contaminatio | n | Mass (consider system mass) | | |------------------------------|-------------------------------|---|---|---|---------------------------------|---|---|----------| | Direct Core
Transfer | Low,
transfers
raw core | • | Transfer with large arm limits precision | 1 | More exposed,
increases risk | 1 | Low mass, but
drill needs a
push rod | ⇒ | | Indirect
Core
Transfer | Low,
transfers
raw core | 1 | Transfer with small arm increases precision | 1 | Less exposed,
decreases risk | 1 | Medium mass,
but drill needs a
push rod | 1 | | Direct Tube
Transfer | High,
transfers
tube | 1 | Transfer
with large
arm limits
precision | 1 | More exposed,
increases risk | 1 | Low mass, but drill
needs a push rod
and tube gripper | ⇒ | | Indirect
Tube
Transfer | High,
transfers
tube | 1 | Transfer with small arm increases precision | 1 | Less exposed,
decreases risk | 1 | Medium mass,
reduces drill
functions (mass) | ⇒ | ## Sample Acquisition and Caching: Operational Sequence - 1. Sample Handling, Encapsulation and Containerization (SHEC) caching subsystem retrieves a new tube and puts it in a bit and rotates the bit to the bit port. - 2. Tool Deployment Device (TDD) positions Sample Acquisition Tool (SAT) at SHEC bit port and SAT engages bit. - 3. TDD deploys SAT to rock. - 4. SAT acquires, breaks off, and retains a core directly into a sample tube in the bit. - 5. TDD transports SAT to SHEC caching subsystem and inserts coring bit into SHEC bit port. - 6. Bit is released by SAT and engaged by SHEC. - 7. SHEC removes tube from bit, seals the tube, and stores the tube in the canister. - 8. Ready to acquire another core sample. ## Sample Encapsulation ## Sample Encapsulation ## Sample Encapsulation ## Bit Changeout ## **Canister Removal** ## Sample Canister ^{*} Sample canister with 13 mm holes for 10 mm samples, with ~.75 mm min wall thickness between holes ## Bringing the Samples Back to Earth Integrated Mars Sample Acquisition & Handling (IMSAH) ## Possible Mars Sample Return Mission Storyboard